Ground improvement case histories : embankments with special reference to consolidation and other physical methods / edited by Buddhima Indraratna, Jian Chu, Cholachat Rujikiatkamjorn ; contributors, Dimiter Alexiew [and forty-seven others].
Publisher: Burlington : Elsevier Science, 2015Edition: First editionDescription: xviii, 817 pages ; 24cmContent type:- text
- computer
- online resource
- 0081001924
- 9780081001929
- 0081002394
- 9780081002391
- 624.162 23 G882

Item type | Current library | Call number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
Central Library المكتبة المركزية | 624.162 G882 (Browse shelf(Opens below)) | Available | قاعة الكتب | 45405 |
Browsing Central Library المكتبة المركزية shelves Close shelf browser (Hides shelf browser)
No cover image available | ||||||||
624.151 A995 Engineering design in geotechnics / | 624.15132 H886 Rock engineering Risk/ | 624.151363 N627 Soil improvement & ground modification methods / | 624.162 G882 Ground improvement case histories : embankments with special reference to consolidation and other physical methods / | 624.171 M497 Structural and stress analysis / | 624.176 W246 Structural vibration : exact solutions for strings, membranes, beams, and plates / | 624.1762 P911 Fundamentals of Soil Dynamics and Earthquake Engineering |
Includes bibliographical references at the end of each chapters and index.
Front Cover; Ground Improvement Case Histories: Embankments with Special Reference to Consolidation and Other Physical Methods; Copyright ; Dedication; Contents ; Contributors ; Foreword ; Preface ; Part One: Preloading, Vertical Drains, and Vacuum Application; Chapter 1: Recent Advances in Soft Soil Consolidation; 1.1. Introduction; 1.2. Principles of vacuum consolidation via prefabricated vertical drains; 1.2.1. Fundamentals of vacuum preloading; 1.2.2. Plane strain conversion in numerical modeling; 1.2.3. Cyclic behavior of soft soils; 1.3. Case histories; 1.3.1. Port of Brisbane.
2.3. Results obtained in test areas2.3.1. One-dimensional consolidation; Sk�a-Edeby test field; Excess pore pressure dissipation; Lilla Mell�osa test area; Excess pore pressure dissipation; Consolidation settlement; 2.3.2. Vertical drainage; Test field at Sk�a-Edeby; �Orebro test field; Bangkok test field; Vagnh�arad vacuum test; Porto Tolle test site, Italy; Stockholm Arlanda project; The course of settlement in non-Darcian flow:; The course of excess pore pressure dissipation:; 2.4. Conclusion; 2.5. Notations; References.
Chapter 3: Theoretical and Numerical Perspectives and Field Observations for the Design and Performance Evaluation of Emb ... 3.1. Introduction; 3.2. Installation and monitoring of vertical drains; 3.2.1. Inclinometers; 3.2.2. Settlement indicators; 3.2.3. Piezometers; 3.3. Drain properties; 3.3.1. Diameter of influence zone; 3.3.2. Equivalent drain diameter of band-shaped vertical drain; 3.3.3. Discharge capacity; 3.4. Factors influencing the vertical drain efficiency; 3.4.1. Smear zone; 3.4.2. Effect of a sand mat; 3.4.3. Well resistance; 3.5. Development of vertical drain theory.
3.5.1. Rendulic and Carillo diffusion theory3.5.2. Barron-equal strain rigorous solution; 3.5.3. Hansbo-analysis with smear and well resistance; 3.6. 2D modeling of vertical drains; 3.6.1. Shinsha et al.-permeability transformation; 3.6.2. Hird et al.-geometry and permeability matching; 3.6.3. Bergado and Long-equal discharge concept; 3.6.4. Chai et al.-well resistance and clogging; 3.6.5. Kim and Lee-time factor analysis; 3.6.6. Indraratna and Redana-rigorous solution for parallel drain wall; 3.7. Simple 1D modeling of vertical drains.
English.
Print version record.
Online resource; title from PDF title page (ebrary, viewed June 10, 2015).