icon
Image from Google Jackets
Image from OpenLibrary

The sugar code : fundamentals of glycosciences / edited by Hans-Joachim Gabius ; contributor Sabine Andr�e [and twenty-five others].

By: Contributor(s): Publisher: Weinheim an der Bergstrasse, Germany : Wiley-VCH Verlag GmbH and Company, 2009Copyright date: �2009Edition: 2nd edDescription: 1 online resource (599 pages) : illustrations, tablesContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527644964
  • 3527644962
Subject(s): Additional physical formats: Print version:: Sugar code : fundamentals of glycosciences.DDC classification:
  • 547.78 23
LOC classification:
  • QD321 .S843 2009
Contents:
Cover -- Title page -- Contents -- Forewords -- Preface -- List of Contributors -- Part One Chemical Basis -- 1 The Biochemical Basis and Coding Capacity of the Sugar Code -- 1.1 Etymological Roots -- 1.2 What Projection Formulas Tell Us -- 1.3 The Coding Capacity of the Sugar Code -- 1.4 Conclusions -- References -- 2 Three-Dimensional Aspects of the Sugar Code -- 2.1 How to Obtain Information about Carbohydrate Conformation -- 2.2 Complexity of Carbohydrate Flexibility -- 2.3 How to Describe the Shape of Monosaccharides -- 2.4 How to Describe the Shape of Di- and Oligosaccharides -- 2.5 Additional Factors Influencing the Shape of Oligo- and Polysaccharides -- 2.6 Examples of Di- and Oligosaccharide Conformations -- 2.7 Carbohydrate-Protein Intermolecular Interactions and Reaction Mechanisms -- 2.8 How to Perform Molecular Modeling of Large Glycans -- 2.9 Conclusions -- References -- 3 The Chemist's Way to Synthesize Glycosides -- 3.1 Synthesis of Oligosaccharides: Strategies -- 3.2 Glycosidic Bond Formation -- 3.3 Fischer Glycosylations -- 3.4 Glycosyl Donors -- 3.5 Anomeric Configuration: Stereoselectivity -- 3.5.1 Formation of 1,2-Trans-Linkages -- 3.5.2 Formation of 1,2-Cis-Linkages -- 3.6 Neuraminic Acid and Kdo-Glycoside Synthesis -- 3.7 Formation of Building Blocks: Orthogonal Glycosylations -- 3.8 Protecting Group Manipulations -- 3.9 An Example -- 3.10 Conclusions -- References -- 4 The Chemist's Way to Prepare Multivalency -- 4.1 Blocking Viral/Bacterial Adhesion -- 4.2 How to Prepare Multivalent Carbohydrates? -- 4.3 Neoglycoproteins -- 4.4 Neoglycolipids and Liposomes -- 4.5 Glycopolymers -- 4.6 Glycodendrimers -- 4.7 Glycodendrimer Syntheses -- 4.8 Conclusions -- References -- 5 Analytical Aspects: Analysis of Protein-Bound Glycans -- 5.1 Detection of Glycans on Glycoproteins -- 5.2 Release of Glycans from Glycoproteins.
5.3 Glycan Purification -- 5.4 Detailed Structural Analysis Using HPLC -- 5.5 Detailed Structural Analysis Using MS -- 5.6 Glycomic Analysis Using MS -- 5.7 Other Methods of Analysis -- 5.8 Glycopeptide Analysis Using MS -- 5.9 Conclusions -- References -- Part Two Natural Glycosylation -- Glycoproteins -- 6 N-Glycosylation -- 6.1 NCAM1 -- 6.2 Initial Steps in Asparagine-Linked Glycosylation -- 6.3 Trimming Reactions by �U-Glucosidases and Interactions with ER Lectins -- 6.4 Quality Control of Protein Folding and Assembly: Machinery and Principal Mechanism -- 6.5 ER Exit -- Facing a Crucial Decision and What Mannose Has to Do -- 6.6 How to Become a Mature N-Glycan? -- 6.6.1 Golgi Mannose Trimming as the Start for N-Glycan Elongation -- 6.6.2 Nucleotide Sugar Transporters Import the Fuel for Oligosaccharide Elongation -- 6.6.3 Glycosyltransferases: The Orderly Maturation Reactions -- 6.7 Structure Building by N-Acetylglucosaminyltransferase-I and Fucosyltransferase-VIII -- 6.8 Branching and Elongation Reactions -- 6.8.1 Mannosyl �Y-N-Acetylglucosaminyltransferases -- 6.8.2 N-Acetylglucosaminyl-�Y-Galactosyltransferases -- 6.8.3 Capping Sugars Provide Functions -- 6.8.4 Sialyltransferases -- 6.8.5 Fucosyltransferases -- 6.8.6 Glucuronyltransferases -- 6.8.7 Sulfotransferases -- 6.9 Diversity of N-Glycans: Structural and Functional Implications -- 6.10 Conclusions -- References -- 7 O-Glycosylation: Structural Diversity and Functions -- 7.1 Structure of O-Linked Glycans -- 7.2 Biosynthetic Routes for O-Glycans -- 7.3 Regulation of O-Glycosylation and Glycan Processing -- 7.3.1 O-GalNAc, Mucin Type -- 7.3.2 �Y-O-GlcNAc -- 7.3.3 O-Man -- 7.3.4 O-Fuc and O-Glc -- 7.4 Functions of O-Linked Glycosylation -- 7.4.1 O-GalNAc, Mucin Type -- 7.4.1.1 Protein Structure and Stability -- 7.4.1.2 Protein Conformation and Tertiary Structure.
7.4.1.3 Protein Quaternary Structure and Molecular Association -- 7.4.1.4 Protein Stability: Protease and Heat Resistance -- 7.4.1.5 Recognition Phenomena -- 7.4.2 �Y-O-GlcNAc -- 7.4.2.1 Protein Structure and Stability -- 7.4.2.2 Recognition Phenomena and Disease -- 7.4.3 O-Man -- 7.4.3.1 Protein Structure and Stability -- 7.4.3.2 Recognition Phenomena -- 7.4.4 O-Fuc and O-Glc -- 7.4.4.1 Protein Structure and Stability -- 7.4.4.2 Recognition Phenomena -- 7.5 Mucins: A Major Group of O-Glycosylated Proteins -- 7.6 Conclusions -- References -- 8 Glycosylation of Model and 'Lower' Organisms -- 8.1 Bacterial Glycosylation -- 8.2 Yeast Glycosylation -- 8.3 Plant Glycosylation -- 8.4 Insect Glycosylation -- 8.5 Worm Glycosylation -- 8.6 Protozoan Glycosylation -- 8.7 Fish Glycosylation -- 8.8 Conclusions -- References -- 9 Glycosylphosphatidylinositol Anchors: Structure, Biosynthesis and Functions -- 9.1 Structure of GPI Anchors -- 9.1.1 Detection and Isolation of GPI-Anchored Proteins -- 9.1.2 Biosynthesis of GPI Anchors -- 9.2 Remodeling of Lipid Moieties of GPI Proteins -- 9.3 Chemical Synthesis of GPIs -- 9.3.1 Mutant Cells Lead the Way to Identification of Complementation Classes Involved in GPI Biosynthesis -- 9.3.2 Defects in GPI Anchor Biosynthesis -- 9.3.3 Function -- 9.4 Conclusions -- References -- Part Three Natural Glycosylation -- Glycolipids, Proteoglycans and Chitin -- 10 Glycolipids -- 10.1 Classification and General Structures of Glycolipids -- 10.2 Glycoglycerolipids in Thylakoid Membranes -- 10.3 Glycolipids in Non-photosynthetic Bacteria -- 10.4 Bacterial Glycolipids in T-Cell Activation -- 10.5 Glycosphingolipids (GSLs) -- 10.6 Complex Neutral GSLs -- 10.7 Complex Acidic (Anionic) GSLs -- 10.8 Survey of GSL Functions -- 10.9 GSL Microdomains -- 10.10 GSLs as Attachment Sites for Viruses, Bacteria and Toxins.
10.11 GSLs as Developmental or Differentiation Markers -- 10.12 Tumor-Associated GSL Antigens -- 10.13 Gangliosides in Neural Tissue -- 10.14 GSL Degradation and GSL Storage Disorders -- 10.15 Conclusions -- References -- 11 Proteoglycans -- 11.1 Glycosaminoglycans: Components of Proteoglycans (PGs) -- 11.1.1 Structure -- 11.1.2 Biosynthesis -- 11.1.3 Catabolism -- 11.2 PGs -- 11.3 Large Aggregating (Hyaluronan-Binding) PGs -- 11.3.1 Aggrecan -- 11.3.2 Versican -- 11.3.3 Neurocan, Brevican -- 11.4 Small Leucine-Rich PGs -- 11.5 Basement Membrane PGs -- 11.6 Cell-Surface (Transmembrane) PGs -- 11.6.1 Syndecans -- 11.6.1.1 Structure -- 11.6.1.2 Functions -- 11.6.2 Glypicans -- 11.7 Conclusions -- References -- 12 Chitin -- 12.1 Occurrence -- 12.2 Structure -- 12.3 Function -- 12.3.1 Fungal Cell Walls -- 12.3.2 Arthropod Cuticles and Shells -- 12.3.3 Peritrophic Matrices and Cocoons -- 12.3.4 Other Functions -- 12.4 Metabolism -- 12.5 Conclusions -- References -- Part Four Protein-Carbohydrate Interactions -- 13 Protein-Carbohydrate Interactions: Basic Concepts and Methods for Analysis -- 13.1 Atomic Features of Protein-Sugar Interactions -- 13.2 Role of Water in Protein-Sugar Interactions -- 13.3 Selection of Carbohydrate Conformers by Proteins -- 13.4 Thermodynamics of Protein-Carbohydrate Interactions -- 13.5 Conclusions -- References -- 14 How to Determine Specificity: From Lectin Profiling to Glycan Mapping and Arrays -- 14.1 Quantitative Aspects of Lectin Affinity -- 14.2 Frontal Affinity Chromatography (FAC) for Sugar-Protein Interactions -- 14.3 Automated FAC-FD System -- 14.4 From 'Lectin Profiling' to 'Glycan Mapping' -- 14.5 Lectin Microarray Enables Multiplexed Lectin-Glycan Interaction Analysis -- 14.6 Practice in Differential Glycan Profiling: Approaches and Applications -- 14.7 Conclusions -- References -- 15 The History of Lectinology.
15.1 How Lectinology Started -- 15.2 Early Definitions -- 15.3 The Current Definition of the Term 'Lectin' -- 15.4 Recent Developments -- 15.5 Conclusions -- References -- 16 Ca2+: Mastermind and Active Player for Lectin Activity (Including a Gallery of Lectin Folds) -- 16.1 Ca2+: Organizing the Active Site -- 16.2 Ca2+: Contacting Charged Ligands -- 16.3 Ca2+: Neutralizing Negative Charges and Contacting Neutral Ligands -- 16.4 Conclusions -- References -- 17 Bacterial and Viral Lectins -- 17.1 Bacterial Lectins -- 17.1.1 Fimbriae/Pili -- 17.1.1.1 Type 1 Fimbriae -- 17.1.1.2 Type P Fimbriae -- 17.1.1.3 Type S Fimbriae -- 17.1.1.4 Type IV Pili -- 17.1.2 Bacterial Surface Lectins -- 17.1.2.1 BabA and SabA -- 17.1.2.2 LecA and LecB -- 17.1.3 Toxins -- 17.1.3.1 Toxin A of Clostridium difficile -- 17.1.3.2 Cholera Toxin -- 17.1.3.3 Heat-Labile and Heat-Stable Toxins -- 17.1.3.4 Shiga and Shiga-Like Toxins -- 17.2 Virus Binding -- 17.2.1 Influenza Virus -- 17.2.1.1 Influenza Virus Surface Proteins -- 17.2.1.2 Epidemiology -- 17.2.1.3 Influenza Virus Species and Tissue Tropism -- 17.2.2 Rotavirus -- 17.2.3 Human Immunodeficiency Virus 1 -- 17.2.4 Norovirus -- 17.2.5 Herpes viruses -- 17.2.6 Hepatitis C Virus -- 17.2.7 Paramyxoviridae -- 17.3 Carbohydrate-Based Antiinfectives -- 17.3.1 Neuraminidase Inhibitors as Drugs Against Influenza -- 17.3.2 Oligosaccharides as Inhibitors of Microbial Adhesion -- 17.3.3 A New Generation of Multivalent, Carbohydrate-Based Inhibitors of Microbial Adhesion -- 17.4 Conclusions -- References -- 18 Plant Lectins -- 18.1 Nomenclature -- 18.2 Folding Patterns and Occurrence -- 18.3 Purification -- 18.4 Applications -- 18.5 Biological Functions -- 18.6 Conclusions -- References -- 19 Animal and Human Lectins -- 19.1 Protein Folds with Lectin Activity -- 19.2 Functions of Animal and Human Lectins.
Summary: A reader friendly overview of the structure and functional relevance of natural glycosylation and its cognate proteins (lectins), this book is also one of the few books to cover their role in health and disease. Edited by one of the pioneering experts in the field and written by a team of renowned researchers this resource is a perfect introduction for all students in life and medical sciences, biochemistry, chemistry and pharmacy. Website: WWW.WILEY-VCH. DE/HOME/THESUGARCODE.
Item type: كتاب
Tags from this library: No tags from this library for this title.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Notes Date due Barcode
كتاب كتاب الطب QD 321 (Browse shelf(Opens below)) Available مكتبة كلية طب الموصل

19.3 Lectin Ligands and Affinity Regulation.

Includes bibliographical references and index.

Cover -- Title page -- Contents -- Forewords -- Preface -- List of Contributors -- Part One Chemical Basis -- 1 The Biochemical Basis and Coding Capacity of the Sugar Code -- 1.1 Etymological Roots -- 1.2 What Projection Formulas Tell Us -- 1.3 The Coding Capacity of the Sugar Code -- 1.4 Conclusions -- References -- 2 Three-Dimensional Aspects of the Sugar Code -- 2.1 How to Obtain Information about Carbohydrate Conformation -- 2.2 Complexity of Carbohydrate Flexibility -- 2.3 How to Describe the Shape of Monosaccharides -- 2.4 How to Describe the Shape of Di- and Oligosaccharides -- 2.5 Additional Factors Influencing the Shape of Oligo- and Polysaccharides -- 2.6 Examples of Di- and Oligosaccharide Conformations -- 2.7 Carbohydrate-Protein Intermolecular Interactions and Reaction Mechanisms -- 2.8 How to Perform Molecular Modeling of Large Glycans -- 2.9 Conclusions -- References -- 3 The Chemist's Way to Synthesize Glycosides -- 3.1 Synthesis of Oligosaccharides: Strategies -- 3.2 Glycosidic Bond Formation -- 3.3 Fischer Glycosylations -- 3.4 Glycosyl Donors -- 3.5 Anomeric Configuration: Stereoselectivity -- 3.5.1 Formation of 1,2-Trans-Linkages -- 3.5.2 Formation of 1,2-Cis-Linkages -- 3.6 Neuraminic Acid and Kdo-Glycoside Synthesis -- 3.7 Formation of Building Blocks: Orthogonal Glycosylations -- 3.8 Protecting Group Manipulations -- 3.9 An Example -- 3.10 Conclusions -- References -- 4 The Chemist's Way to Prepare Multivalency -- 4.1 Blocking Viral/Bacterial Adhesion -- 4.2 How to Prepare Multivalent Carbohydrates? -- 4.3 Neoglycoproteins -- 4.4 Neoglycolipids and Liposomes -- 4.5 Glycopolymers -- 4.6 Glycodendrimers -- 4.7 Glycodendrimer Syntheses -- 4.8 Conclusions -- References -- 5 Analytical Aspects: Analysis of Protein-Bound Glycans -- 5.1 Detection of Glycans on Glycoproteins -- 5.2 Release of Glycans from Glycoproteins.

5.3 Glycan Purification -- 5.4 Detailed Structural Analysis Using HPLC -- 5.5 Detailed Structural Analysis Using MS -- 5.6 Glycomic Analysis Using MS -- 5.7 Other Methods of Analysis -- 5.8 Glycopeptide Analysis Using MS -- 5.9 Conclusions -- References -- Part Two Natural Glycosylation -- Glycoproteins -- 6 N-Glycosylation -- 6.1 NCAM1 -- 6.2 Initial Steps in Asparagine-Linked Glycosylation -- 6.3 Trimming Reactions by �U-Glucosidases and Interactions with ER Lectins -- 6.4 Quality Control of Protein Folding and Assembly: Machinery and Principal Mechanism -- 6.5 ER Exit -- Facing a Crucial Decision and What Mannose Has to Do -- 6.6 How to Become a Mature N-Glycan? -- 6.6.1 Golgi Mannose Trimming as the Start for N-Glycan Elongation -- 6.6.2 Nucleotide Sugar Transporters Import the Fuel for Oligosaccharide Elongation -- 6.6.3 Glycosyltransferases: The Orderly Maturation Reactions -- 6.7 Structure Building by N-Acetylglucosaminyltransferase-I and Fucosyltransferase-VIII -- 6.8 Branching and Elongation Reactions -- 6.8.1 Mannosyl �Y-N-Acetylglucosaminyltransferases -- 6.8.2 N-Acetylglucosaminyl-�Y-Galactosyltransferases -- 6.8.3 Capping Sugars Provide Functions -- 6.8.4 Sialyltransferases -- 6.8.5 Fucosyltransferases -- 6.8.6 Glucuronyltransferases -- 6.8.7 Sulfotransferases -- 6.9 Diversity of N-Glycans: Structural and Functional Implications -- 6.10 Conclusions -- References -- 7 O-Glycosylation: Structural Diversity and Functions -- 7.1 Structure of O-Linked Glycans -- 7.2 Biosynthetic Routes for O-Glycans -- 7.3 Regulation of O-Glycosylation and Glycan Processing -- 7.3.1 O-GalNAc, Mucin Type -- 7.3.2 �Y-O-GlcNAc -- 7.3.3 O-Man -- 7.3.4 O-Fuc and O-Glc -- 7.4 Functions of O-Linked Glycosylation -- 7.4.1 O-GalNAc, Mucin Type -- 7.4.1.1 Protein Structure and Stability -- 7.4.1.2 Protein Conformation and Tertiary Structure.

7.4.1.3 Protein Quaternary Structure and Molecular Association -- 7.4.1.4 Protein Stability: Protease and Heat Resistance -- 7.4.1.5 Recognition Phenomena -- 7.4.2 �Y-O-GlcNAc -- 7.4.2.1 Protein Structure and Stability -- 7.4.2.2 Recognition Phenomena and Disease -- 7.4.3 O-Man -- 7.4.3.1 Protein Structure and Stability -- 7.4.3.2 Recognition Phenomena -- 7.4.4 O-Fuc and O-Glc -- 7.4.4.1 Protein Structure and Stability -- 7.4.4.2 Recognition Phenomena -- 7.5 Mucins: A Major Group of O-Glycosylated Proteins -- 7.6 Conclusions -- References -- 8 Glycosylation of Model and 'Lower' Organisms -- 8.1 Bacterial Glycosylation -- 8.2 Yeast Glycosylation -- 8.3 Plant Glycosylation -- 8.4 Insect Glycosylation -- 8.5 Worm Glycosylation -- 8.6 Protozoan Glycosylation -- 8.7 Fish Glycosylation -- 8.8 Conclusions -- References -- 9 Glycosylphosphatidylinositol Anchors: Structure, Biosynthesis and Functions -- 9.1 Structure of GPI Anchors -- 9.1.1 Detection and Isolation of GPI-Anchored Proteins -- 9.1.2 Biosynthesis of GPI Anchors -- 9.2 Remodeling of Lipid Moieties of GPI Proteins -- 9.3 Chemical Synthesis of GPIs -- 9.3.1 Mutant Cells Lead the Way to Identification of Complementation Classes Involved in GPI Biosynthesis -- 9.3.2 Defects in GPI Anchor Biosynthesis -- 9.3.3 Function -- 9.4 Conclusions -- References -- Part Three Natural Glycosylation -- Glycolipids, Proteoglycans and Chitin -- 10 Glycolipids -- 10.1 Classification and General Structures of Glycolipids -- 10.2 Glycoglycerolipids in Thylakoid Membranes -- 10.3 Glycolipids in Non-photosynthetic Bacteria -- 10.4 Bacterial Glycolipids in T-Cell Activation -- 10.5 Glycosphingolipids (GSLs) -- 10.6 Complex Neutral GSLs -- 10.7 Complex Acidic (Anionic) GSLs -- 10.8 Survey of GSL Functions -- 10.9 GSL Microdomains -- 10.10 GSLs as Attachment Sites for Viruses, Bacteria and Toxins.

10.11 GSLs as Developmental or Differentiation Markers -- 10.12 Tumor-Associated GSL Antigens -- 10.13 Gangliosides in Neural Tissue -- 10.14 GSL Degradation and GSL Storage Disorders -- 10.15 Conclusions -- References -- 11 Proteoglycans -- 11.1 Glycosaminoglycans: Components of Proteoglycans (PGs) -- 11.1.1 Structure -- 11.1.2 Biosynthesis -- 11.1.3 Catabolism -- 11.2 PGs -- 11.3 Large Aggregating (Hyaluronan-Binding) PGs -- 11.3.1 Aggrecan -- 11.3.2 Versican -- 11.3.3 Neurocan, Brevican -- 11.4 Small Leucine-Rich PGs -- 11.5 Basement Membrane PGs -- 11.6 Cell-Surface (Transmembrane) PGs -- 11.6.1 Syndecans -- 11.6.1.1 Structure -- 11.6.1.2 Functions -- 11.6.2 Glypicans -- 11.7 Conclusions -- References -- 12 Chitin -- 12.1 Occurrence -- 12.2 Structure -- 12.3 Function -- 12.3.1 Fungal Cell Walls -- 12.3.2 Arthropod Cuticles and Shells -- 12.3.3 Peritrophic Matrices and Cocoons -- 12.3.4 Other Functions -- 12.4 Metabolism -- 12.5 Conclusions -- References -- Part Four Protein-Carbohydrate Interactions -- 13 Protein-Carbohydrate Interactions: Basic Concepts and Methods for Analysis -- 13.1 Atomic Features of Protein-Sugar Interactions -- 13.2 Role of Water in Protein-Sugar Interactions -- 13.3 Selection of Carbohydrate Conformers by Proteins -- 13.4 Thermodynamics of Protein-Carbohydrate Interactions -- 13.5 Conclusions -- References -- 14 How to Determine Specificity: From Lectin Profiling to Glycan Mapping and Arrays -- 14.1 Quantitative Aspects of Lectin Affinity -- 14.2 Frontal Affinity Chromatography (FAC) for Sugar-Protein Interactions -- 14.3 Automated FAC-FD System -- 14.4 From 'Lectin Profiling' to 'Glycan Mapping' -- 14.5 Lectin Microarray Enables Multiplexed Lectin-Glycan Interaction Analysis -- 14.6 Practice in Differential Glycan Profiling: Approaches and Applications -- 14.7 Conclusions -- References -- 15 The History of Lectinology.

15.1 How Lectinology Started -- 15.2 Early Definitions -- 15.3 The Current Definition of the Term 'Lectin' -- 15.4 Recent Developments -- 15.5 Conclusions -- References -- 16 Ca2+: Mastermind and Active Player for Lectin Activity (Including a Gallery of Lectin Folds) -- 16.1 Ca2+: Organizing the Active Site -- 16.2 Ca2+: Contacting Charged Ligands -- 16.3 Ca2+: Neutralizing Negative Charges and Contacting Neutral Ligands -- 16.4 Conclusions -- References -- 17 Bacterial and Viral Lectins -- 17.1 Bacterial Lectins -- 17.1.1 Fimbriae/Pili -- 17.1.1.1 Type 1 Fimbriae -- 17.1.1.2 Type P Fimbriae -- 17.1.1.3 Type S Fimbriae -- 17.1.1.4 Type IV Pili -- 17.1.2 Bacterial Surface Lectins -- 17.1.2.1 BabA and SabA -- 17.1.2.2 LecA and LecB -- 17.1.3 Toxins -- 17.1.3.1 Toxin A of Clostridium difficile -- 17.1.3.2 Cholera Toxin -- 17.1.3.3 Heat-Labile and Heat-Stable Toxins -- 17.1.3.4 Shiga and Shiga-Like Toxins -- 17.2 Virus Binding -- 17.2.1 Influenza Virus -- 17.2.1.1 Influenza Virus Surface Proteins -- 17.2.1.2 Epidemiology -- 17.2.1.3 Influenza Virus Species and Tissue Tropism -- 17.2.2 Rotavirus -- 17.2.3 Human Immunodeficiency Virus 1 -- 17.2.4 Norovirus -- 17.2.5 Herpes viruses -- 17.2.6 Hepatitis C Virus -- 17.2.7 Paramyxoviridae -- 17.3 Carbohydrate-Based Antiinfectives -- 17.3.1 Neuraminidase Inhibitors as Drugs Against Influenza -- 17.3.2 Oligosaccharides as Inhibitors of Microbial Adhesion -- 17.3.3 A New Generation of Multivalent, Carbohydrate-Based Inhibitors of Microbial Adhesion -- 17.4 Conclusions -- References -- 18 Plant Lectins -- 18.1 Nomenclature -- 18.2 Folding Patterns and Occurrence -- 18.3 Purification -- 18.4 Applications -- 18.5 Biological Functions -- 18.6 Conclusions -- References -- 19 Animal and Human Lectins -- 19.1 Protein Folds with Lectin Activity -- 19.2 Functions of Animal and Human Lectins.

A reader friendly overview of the structure and functional relevance of natural glycosylation and its cognate proteins (lectins), this book is also one of the few books to cover their role in health and disease. Edited by one of the pioneering experts in the field and written by a team of renowned researchers this resource is a perfect introduction for all students in life and medical sciences, biochemistry, chemistry and pharmacy. Website: WWW.WILEY-VCH. DE/HOME/THESUGARCODE.

Online resource; title from PDF title page (ebrary, viewed December 26, 2013).