000 | 03189cam a22004817i 4500 | ||
---|---|---|---|
001 | 20922 | ||
003 | OSt | ||
005 | 20241204130613.0 | ||
008 | 240607t20232024cauad 001 0 eng d | ||
020 |
_a9781098146474 _qpaperback |
||
020 |
_a1098146476 _qpaperback |
||
040 |
_aYDX _beng _erda _cYDX _dOCLCO _dJRZ _dOCLCO _dBDX _dIUL _dOCLCF _dOCLCO _dDLC _dIQ-MoCLU |
||
082 | 0 | 4 |
_a006.312 _223 _bV365 |
100 | 1 |
_aVaughan, Daniel, _eauthor. |
|
245 | 1 | 0 |
_aData science: the hard parts : _btechniques for excelling at data science / _cDaniel Vaughan. |
246 | 3 | 0 | _aTechniques for excelling at data science |
250 | _aFirst edition. | ||
264 | 1 |
_aSebastopol, CA : _bO'Reilly Media, _c2023 |
|
264 | 4 | _c©2024 | |
300 |
_axvi, 237 pages : _billustrations, charts ; _c24 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
500 | _a"November 2023: First Edition"--Title page verso. | ||
500 | _aIncludes index. | ||
505 | 0 | 0 |
_tData analytics techniques -- _tSo what? Creating value with data science -- _tMetrics design -- _tGrowth decompositions: understanding tailwinds and headwinds -- _t2x2 designs -- _tBuilding business cases -- _tWhat's in a lift? -- _tNarratives -- _tDatavis: choosing the right plot to deliver a message -- _tMachine learning -- _tSimulation and bootstrapping -- _tLinear regression : going back to basics -- _tData leakage -- _tProductionizing models -- _tStorytelling in machine learning -- _tFrom prediction to decisions -- _tIncrementality: the holy grail of data science? -- _tA/B tests -- _tLarge language models and the practice of data science. |
520 | _aThis hands-on guide offers a set of techniques and best practices that are often missed in conventional data engineering and data science education. A common misconception is that great data scientists are experts in the "bit themes" of the discipline, namely ML and programming. But most of the time, these tools can only take us so far. In reality, it's the nuances within these large themes, and the ability to impact the business, that truly distinguish a top-notch data scientist from an average one. Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and an exceptional data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries. | ||
650 | 0 | _aElectronic data processing. | |
650 | 0 | _aBig data. | |
650 | 0 | _aDatabase management. | |
650 | 0 | _aData mining. | |
650 | 6 | _aDonnées volumineuses. | |
650 | 6 |
_aBases de données _xGestion. |
|
650 | 6 | _aExploration de données (Informatique) | |
650 | 7 |
_aBig data _2fast |
|
650 | 7 |
_aData mining _2fast |
|
650 | 7 |
_aDatabase management _2fast |
|
650 | 7 |
_aElectronic data processing _2fast |
|
776 | 0 | 8 |
_iOnline version: _aVaughan, Daniel. _tData science. _bFirst edition. _dSebastopol, [California] : O'Reilly Media, 2023 _z9781098146443 _w(OCoLC)1407278110 |
910 | _aSAJA | ||
942 |
_2ddc _cBK |
||
999 |
_c20922 _d20922 |