000 | 01562pam a2200337 a 4500 | ||
---|---|---|---|
001 | 22429 | ||
003 | OSt | ||
005 | 20250119095701.0 | ||
008 | 940623s1995 enka b 001 0 eng | ||
010 | _a 94027392 | ||
020 | _a0198534892 | ||
040 |
_aDLC _cDLC _dDLC _dIQ_MoCLU _bara _erda |
||
082 | 0 | 0 |
_a512/.2 _220 _bM135 |
100 | 1 |
_aMacdonald, I. G. _q(Ian Grant) |
|
245 | 1 | 0 |
_aSymmetric functions and Hall polynomials / _cI.G. Macdonald. |
250 | _a2nd ed. | ||
260 |
_aOxford : _bClarendon Press ; _aNew York : _bOxford University Press, _c1995. |
||
300 |
_ax, 475 p. : _bill. ; _c25 cm. |
||
336 |
_2rdacontent _aنص _btxt |
||
337 |
_2rdamedia _aدون وسيط _bn |
||
338 |
_2rdacarrier _aمجلد _bnc |
||
440 | 0 | _aOxford mathematical monographs | |
504 | _aIncludes bibliographical references (p. [457]-465) and index. | ||
520 | _aThis new edition incorporates the additions to the translated version, as well as a tremendous amount of new material . . . . Readers familiar with the first edition will find that the author's uniquely brief but lucid style has not changed . . . . This masterful new edition will undoubtedly remain the standard reference for symmetric polynomials. It serves as proof of the metatheorem that wherever 'natural' structures indexed by partitions arise, the algebra of symmetric functions is nearby."--Mathematical Review | ||
650 | 0 | _aAbelian groups. | |
650 | 0 | _aFinite groups. | |
650 | 0 | _aHall polynomials. | |
650 | 0 | _aSymmetric functions. | |
910 | _aدينا | ||
942 |
_2ddc _n0 _cBK |
||
999 |
_c22429 _d22429 |