000 03953nam a22004217a 4500
001 32182
003 OSt
005 20250623095606.0
008 150610t20152015ne a ob 001 0 eng d
020 _a0081001924
020 _a9780081001929
020 _a0081002394
020 _a9780081002391
040 _aAU@
_beng
_erda
_cAU@
082 7 4 _a624.162
_223
_bG882
245 1 0 _aGround improvement case histories :
_bembankments with special reference to consolidation and other physical methods /
_cedited by Buddhima Indraratna, Jian Chu, Cholachat Rujikiatkamjorn ; contributors, Dimiter Alexiew [and forty-seven others].
250 _aFirst edition.
264 1 _aBurlington :
_bElsevier Science,
_c2015.
300 _axviii, 817 pages ;
_c24cm .
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references at the end of each chapters and index.
505 0 _aFront Cover; Ground Improvement Case Histories: Embankments with Special Reference to Consolidation and Other Physical Methods; Copyright ; Dedication; Contents ; Contributors ; Foreword ; Preface ; Part One: Preloading, Vertical Drains, and Vacuum Application; Chapter 1: Recent Advances in Soft Soil Consolidation; 1.1. Introduction; 1.2. Principles of vacuum consolidation via prefabricated vertical drains; 1.2.1. Fundamentals of vacuum preloading; 1.2.2. Plane strain conversion in numerical modeling; 1.2.3. Cyclic behavior of soft soils; 1.3. Case histories; 1.3.1. Port of Brisbane.
505 8 _a2.3. Results obtained in test areas2.3.1. One-dimensional consolidation; Sk�a-Edeby test field; Excess pore pressure dissipation; Lilla Mell�osa test area; Excess pore pressure dissipation; Consolidation settlement; 2.3.2. Vertical drainage; Test field at Sk�a-Edeby; �Orebro test field; Bangkok test field; Vagnh�arad vacuum test; Porto Tolle test site, Italy; Stockholm Arlanda project; The course of settlement in non-Darcian flow:; The course of excess pore pressure dissipation:; 2.4. Conclusion; 2.5. Notations; References.
505 8 _aChapter 3: Theoretical and Numerical Perspectives and Field Observations for the Design and Performance Evaluation of Emb ... 3.1. Introduction; 3.2. Installation and monitoring of vertical drains; 3.2.1. Inclinometers; 3.2.2. Settlement indicators; 3.2.3. Piezometers; 3.3. Drain properties; 3.3.1. Diameter of influence zone; 3.3.2. Equivalent drain diameter of band-shaped vertical drain; 3.3.3. Discharge capacity; 3.4. Factors influencing the vertical drain efficiency; 3.4.1. Smear zone; 3.4.2. Effect of a sand mat; 3.4.3. Well resistance; 3.5. Development of vertical drain theory.
505 8 _a3.5.1. Rendulic and Carillo diffusion theory3.5.2. Barron-equal strain rigorous solution; 3.5.3. Hansbo-analysis with smear and well resistance; 3.6. 2D modeling of vertical drains; 3.6.1. Shinsha et al.-permeability transformation; 3.6.2. Hird et al.-geometry and permeability matching; 3.6.3. Bergado and Long-equal discharge concept; 3.6.4. Chai et al.-well resistance and clogging; 3.6.5. Kim and Lee-time factor analysis; 3.6.6. Indraratna and Redana-rigorous solution for parallel drain wall; 3.7. Simple 1D modeling of vertical drains.
546 _aEnglish.
588 0 _aPrint version record.
588 0 _aOnline resource; title from PDF title page (ebrary, viewed June 10, 2015).
650 4 _aEmbankments.
700 1 _aIndraratna, Buddhima,
_eeditor.
700 1 _aChu, Jian
_eeditor.
700 1 _aRujikiatkamjorn, Cholachat,
_eeditor.
776 0 8 _iPrint version:
_tGround improvement case histories : embankments with special reference to consolidation and other physical methods.
_dAmsterdam, [Netherlands] : Butterworth-Heinemann, �2015
_hxvii, 817 pages
_z9780081001929
910 _asaja
942 _2ddc
_cBK
999 _c32182
_d32182