000 05828nam a22006737a 4500
001 32437
003 OSt
005 20250629094745.0
008 210821s2021 enka ob 001 0 eng d
020 _a9781839530012
_q(electronic bk.)
020 _z9781839530005
040 _aEBLCP
_beng
_erda
_epn
_cEBLCP
082 0 4 _a621.3191
_223
_bS 594
100 1 _aSim�oes, M. Godoy,
_eauthor.
245 1 0 _aArtificial Intelligence for Smarter Power Systems :
_bFuzzy Logic and Neural Networks /
_cMarcelo Godoy Sim�oes
264 1 _aStevenage :
_bInstitution of Engineering & Technology ;
_c2021
300 _a252pages.
_billustrations
_c24cm.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aIET Energy Engineering Series
_v161
500 _a8.5 AI-based control systems for smarter power systems
504 _aIncludes bibliographical references and index.
505 0 _aIntro -- Contents -- About the author -- Foreword -- Preface -- 1. Introduction -- 1.1 Renewable-energy-based generation is shaping the future of power systems -- 1.2 Power electronics and artificial intelligence (AI) allow smarter power systems -- 1.3 Power electronic, artificial intelligence (AI), and simulations will enable optimal operation of renewable energy systems -- 1.4 Engineering, modeling, simulation, and experimental models -- 1.5 Artificial intelligence will play a key role to control microgrid bidirectional power flow
505 8 _a1.6 Book organization optimized for problem-based learning strategies -- 2. Real-time simulation applications for future power systems and smart grids -- 2.1 The state of the art and the future of real-time simulation -- 2.2 Real-time simulation basics and technological considerations -- 2.3 Introduction to the concepts of hardware-in-the-loop testing -- 2.4 RTS testing of smart inverters -- 2.5 RTS testing of wide area monitoring, control, and protection systems (WAMPACS) -- 2.6 Digital twin concepts and real-time simulators -- 3. Fuzzy sets -- 3.1 What is an intelligent system
505 8 _a3.2 Fuzzy reasoning -- 3.3 Introduction to fuzzy sets -- 3.4 Introduction to fuzzy logic -- 3.4.1 Defining fuzzy sets in practical applications -- 3.5 Fuzzy sets kernel -- 4. Fuzzy inference: rule based and relational approaches -- 4.1 Fuzzification, defuzzification, and fuzzy inference engine -- 4.2 Fuzzy operations in different universes of discourse -- 4.3 Mamdani's rule-based Type 1 fuzzy inference -- 4.4 Takagi-Sugeno-Kang (TSK), Type 2 fuzzy inference, parametric fuzzy, and relational-based -- 4.5 Fuzzy model identification and supervision control -- 5. Fuzzy-logic-based control
505 8 _a5.1 Fuzzy control preliminaries -- 5.2 Fuzzy controller heuristics -- 5.3 Fuzzy logic controller design -- 5.4 Industrial fuzzy control supervision and scheduling of conventional controllers -- 6. Feedforward neural networks -- 6.1 Backpropagation algorithm -- 6.2 Feedforward neural networks-a simple binary classifier -- 6.3 Artificial neural network architecture-from the McCulloch-Pitts neuron to multilayer feedforward networks -- 6.4 Neuron activation transfer functions -- 6.5 Data processing for neural networks -- 6.6 Neural-network-based computing
505 8 _a7. Feedback, competitive, and associative neural networks -- 7.1 Feedback networks -- 7.2 Linear Vector Quantization network -- 7.3 Counterpropagation network -- 7.4 Probabilistic neural network -- 7.5 Industrial applicability of artificial neural networks -- 8. Applications of fuzzy logic and neural networks in power electronics and power systems -- 8.1 Fuzzy logic and neural-network-based controller design -- 8.2 Fuzzy-logic-based function optimization -- 8.3 Fuzzy-logic-and-neural-network-based function approximation -- 8.4 Neuro-fuzzy ANFIS-adaptive neural fuzzy inference system
520 _aThis book covers the use of fuzzy logic for power grids. Power systems need to accommodate intermittent renewables and changes in loads while ensuring high power quality. Fuzzy logic uses values between 0 and 1 rather than binary ones, offering advantages in adaptability for energy systems with renewables.
588 0 _aOnline resource; title from PDF title page (IET Digital Library, viewed on October 5, 2021)
650 4 _aSmart power grids.
650 4 _aArtificial intelligence.
653 _aartificial intelligence
653 _abig data applications
653 _adeep learning
653 _apower electronics
653 _aassociative neural networks
653 _acompetitive neural networks
653 _afeedback neural networks
653 _afeedforward neural networks
653 _afuzzy-logic-based control
653 _arelational approaches
653 _arule based approaches
653 _afuzzy inference
653 _afuzzy sets
653 _afuture power systems
653 _asmart grids
653 _areal-time simulation applications
653 _afuzzy logic
776 0 8 _iPrint version:
_aSim�oes, Marcelo Godoy
_tArtificial Intelligence for Smarter Power Systems
_dStevenage : Institution of Engineering & Technology,c2021
_z9781839530005
830 0 _aIET energy engineering series ;
_v161.
856 4 0 _3IET Digital Library
_uhttps://doi.org/10.1049/PBPO161E
856 4 0 _uhttp://public.eblib.com/choice/PublicFullRecord.aspx?p=6699926
856 4 0 _uhttps://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781839530012
856 4 0 _3EBSCOhost
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2999305
910 _azeena
942 _2ddc
_n0
_cBK
948 _hNO HOLDINGS IN IQMCL - 681 OTHER HOLDINGS
999 _c32437
_d32437