000 11626cam a2200613Mi 4500
001 35996
003 OCoLC
005 20250907100111.0
006 m o d
007 cr |n|||||||||
008 180503s2018 xx o 000 0 eng d
020 _a0429895240
_q(electronic bk.)
020 _z9781138600423
_a9781138600423
029 1 _aCHVBK
_b567525651
029 1 _aCHBIS
_b011431202
035 _a(OCoLC)1033854310
_z(OCoLC)1035781073
_z(OCoLC)1036291867
040 _aYDX
_beng
_epn
_cمكتبة قسم علوم الحياة
050 4 _aQD169.C5
072 7 _aSCI
_x013030
_2bisacsh
082 0 4 _a628.52
_223
_bM.236
100 1 _aMal, Joyabrata,
_d1987-
_eAUTHER
245 1 0 _aMICROBIAL SYNTHESIS OF CHALCOGENIDE NANOPARTICLES =
_cJoyabrata Mal.
260 _a[Place of publication not identified] :
_bCRC Press,
_c2018.
300 _a221PEPAR
_c24CM
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
440 _aMICROBIAL SYNTHESIS OF CHALCOGENIDE NANOPARTICLES
500 _aMICROBIOLOGY
505 0 _aCover -- Title -- Joint PhD degree in Environmental Technology -- Thesis committee -- Copyright -- Dedication -- Table of Contents -- Acknowledgement -- Summary -- Sommaria -- Samenvatting -- CHAPTER 1 General introduction -- 1.1. Background -- 1.2. Problem description -- 1.3. Research objectives -- 1.4. Structure of the thesis -- References -- CHAPTER 2 Literature review -- 2.1. Introduction -- 2.2. Quantum dots and their properties -- 2.3. Metal Chalcogenide QDs -- 2.4. Biological metal chalcogenides -- 2.5. Sulfur based chalcogenides -- 2.5.1. Sulfur oxyanion reduction mechanisms -- 2.5.2. Biological synthesis of metal sulfides QDs -- 2.5.2.1. MeS QDs synthesis using bacteria -- 2.5.2.2. MeS QDs synthesis using yeast/fungi -- 2.6. Selenium based chalcogenides -- 2.6.1. Selenium oxyanion reduction mechanisms -- 2.6.2. Biological synthesis of metal selenide QDs -- 2.6.2.1. MeSe QDs synthesis using bacteria -- 2.6.2.2. MeSe QDs synthesis using yeast/fungi -- 2.7. Tellurium based chalcogenides -- 2.7.1. Tellurium oxyanion reduction mechanisms -- 2.7.2. Biological synthesis of cadmium telluride QDs -- 2.7.2.1. CdTe QDs synthesis using bacteria -- 2.7.2.2. CdTe QDs synthesis using fungi/yeast -- 2.8. Mechanisms of biological synthesis of metal chalcogenides -- 2.8.1. Localization of metal chalcogenides -- 2.8.2. Size and shape of biogenic metal chalcogenides -- 2.9. Applications of chalcogenide QDs -- 2.9.1. Cell imaging and tracking -- 2.9.1.1. In-vitro Imaging -- 2.9.1.2. In-vivo imaging -- 2.9.1.3. Cell tracking -- 2.9.2. Cancer imaging -- 2.9.3. Cytotoxicity of MeCh QDs -- References -- CHAPTER 3 Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor -- 3.1. Introduction -- 3.2. Materials and Methods -- 3.2.1. Source of biomass and synthetic wastewater -- 3.2.2. Synthetic wastewater.
505 8 _a3.2.3. Sequencing batch reactor operation -- 3.2.4. Batch experiments -- effect of ammonium on selenium removal -- 3.2.5. Analytical methods -- 3.3. Results -- 3.3.1. Performance of the SBR -- 3.3.1.1. COD removal performance of the SBR -- 3.3.1.2. Selenate removal performance of the SBR -- 3.3.1.3. Ammonium-N removal in the SBR -- 3.3.2. Simultaneous nitrogen and selenium removal profiles in SBR cycles -- 3.3.3. Effect of NH4+-N concentrations on selenium reduction -- 3.4. Discussion -- 3.4.1. Selenate bioreduction by activated sludge in the presence of NH4+-N -- 3.4.2. Fate of biogenic selenium in the SBR system -- 3.4.3. Simultaneous nitrification and denitrification -- 3.5. Conclusion -- References -- CHAPTER 4 Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge -- 4.1. Introduction -- 4.2. Materials and methods -- 4.2.1. Source of biomass -- 4.2.2. Selenite reduction experiments -- 4.2.3. Effect of heavy metals on selenite reduction -- 4.2.4. Kinetics of heavy metal removal -- 4.2.5. Analytical methods -- 4.3. Results -- 4.3.1. Effect of Cd, Zn and Pb on selenite reduction by anaerobic granular sludge -- 4.3.2. Kinetics of heavy metal removal -- 4.3.3. Selenium and heavy metal mass balances -- 4.4. Discussion -- 4.4.1. Effect of heavy metals on selenite reduction -- 4.4.2. Fate of selenium -- 4.4.3. Fate of heavy metals -- 4.4.4. Proposed selenium removal mechanism in the presence of heavy metals -- 4.4.5. Practical implications -- 4.5. Conclusion -- References -- CHAPTER 5 Biosynthesis of CdSe nanoparticles by anaerobic granular sludge -- 5.1. Introduction -- 5.2. Materials and Methods -- 5.2.1. Source of biomass -- 5.2.2. Enrichment of granular sludge for selenite reduction in the presence of Cd(II) -- 5.2.3. Particle size distribution of selenium nanoparticles in aqueous phase.
505 8 _a5.2.4. Absorbance and fluorescence measurements -- 5.2.5. Characterization of biosynthesized CdSe nanoparticles -- 5.2.6. Analytical methods -- 5.3. Results -- 5.3.1. Enrichment of granular sludge for aqueous selenide formation for CdSe synthesis -- 5.3.2. Optical properties and size distribution and of the selenium nanoparticles -- 5.3.3. Selenium speciation and CdSe NPs characterization -- 5.4. Discussion -- 5.4.1. Selenite bioreduction by anaerobic granular sludge in presence of cadmium -- 5.4.2. Selenium speciation and CdSe characterization in aqueous phase -- 5.4.3. Characterization of biomass associated CdSe NPs -- 5.5. Conclusions -- References -- CHAPTER 6 Modification of extracellular polymeric substances (EPS) of anaerobic granular sludge used for synthesis of cadmium selenide nanoparticles -- 6.1. Introduction -- 6.2. Materials and methods -- 6.2.1. Source of biomass and enrichment of granular sludge in Cd(II)/Se(IV) medium .. -- 6.2.2. EPS extraction and characterization -- 6.2.3. Excitation Emission Matrix (EEM) spectra of the EPS by fluorescence spectroscopy.. -- 6.2.4. SEC with diode array and fluorescence detector -- 6.2.5. In vitro experiments on metal(loid) -- EPS interactions -- 6.3. Result -- 6.3.1. EPS biochemical composition -- 6.3.2. Fluorescence properties of the EPS extracts -- 6.3.3. Fingerprints of EPS extract by SEC -- 6.3.4. Metal(loid)-EPS interactions -- 6.3.5. Fractionation of metal(loid)s associated with the extracted EPS -- 6.4. Discussion -- 6.4.1. Effect of enrichment on EPS quantity and granular strength -- 6.4.2. Changes in biochemical composition of EPS extracts -- 6.4.3. Fingerprint of EPS using SEC -- 6.4.4. Interaction of Se and Cd with EPS -- 6.5. Conclusion -- References -- CHAPTER 7 Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed (UASB) reactor -- 7.1. Introduction.
505 8 _a7.2. Materials and methods -- 7.2.1. Source of biomass and synthetic wastewater composition -- 7.2.2. UASB reactor operation -- 7.2.3. Characterization of the Te(0) associated with the tellurite reducing granular sludge -- 7.2.4. Extraction and characterization of EPS -- 7.2.5. Te recovery from tellurite reducing granular sludge -- 7.2.6. Analytical methods -- 7.3. Results -- 7.3.1. Reactor performance -- COD removal -- 7.3.2. Reactor performance -- removal of Te(IV) -- 7.3.3. Characterization of Te associated with granular sludge -- 7.3.4. Recovery of biogenic Te(0) nanoparticles from UASB granules -- 7.3.5. Chemical and EEM fluorescence analysis of Te(0) associated EPS -- 7.4. Discussion -- 7.4.1. Tellurite removal and characterization of biomass associated Te(0) -- 7.4.2. Recovery and characterization of biogenic Te(0) -- 7.4.3. Change in EPS composition after treatment of Te-containing wastewater -- 7.4.4. Practical implications -- 7.5. Conclusion -- References -- CHAPTER 8 A comparison of fate and toxicity of selenite, biogenically and chemically synthesized selenium nanoparticles to the Zebrafish (Danio rerio) embryogenesis -- 8.1. Introduction -- 8.2. Materials and methods -- 8.2.1. Chemicals -- 8.2.2. Nano-Se production -- 8.2.3. Stock solutions of selenite, nano-Seb, and nano-Sec -- 8.2.4. Characterization of nano-Se -- 8.2.5. Characterization of organic material associated with nano-Se -- 8.2.6. Dissolution kinetics of nano-Se -- 8.2.7. Toxicity assay of selenite, nano-Seb and nano-Sec on zebrafish embryos -- 8.2.8. Statistical analysis -- 8.3. Results -- 8.3.1. Characterization of nano-Se -- 8.3.2. Dissolution kinetics of nano-Se -- 8.3.3. Fluorescence properties of organic material associated with nano-Se -- 8.3.4. Survival and hatching rate over time -- 8.4. Discussion.
505 8 _a8.4.1. Comparison of fate and toxicity of nano-Seb with selenite and nano-Sec -- 8.4.2. Effect of EPS on nano-Se toxicity -- 8.4.3. Environmental implications -- 8.5. Conclusions -- References -- CHAPTER 9 Discussion, conclusions and perspectives -- 9.1. General discussion -- 9.1.1. Microbial synthesis of selenium-based chalcogenide nanoparticles -- 9.1.2. Microbial synthesis of tellurium-based chalcogenide -- 9.1.3. EPS characterization -- understanding the change in composition and fingerprints of EPS during Se/Te-containing wastewater treatment -- 9.2. Synthesis of biogenic chalcogen alloys (e.g. Se/Te) -- 9.3. Future perspectives -- References -- APPENDIX 1 -- Biography -- Publications.
520 3 _aRecent years have seen a growing interest in the application of chalcogenide nanoparticles (NPs), e.g. Se, Te, CdSe and CdTe NPs, in various industrial sectors including energy, petroleum refining and in the field of biology and medicine. Moreover, due to the high toxicity of chalcogen oxyanions, their release into the environment is of great concern. Thus, emphasis was given in this study on the development of a novel microbial synthesis process of chalcogenide NPs by combining biological treatment of Se/Te containing wastewaters with biorecovery in the form of Se NPs, Te NPs and CdSe NPs. Enrichment of Se-oxyanion reducing microorganisms was carried out to simultaneously remove selenite (Se(IV)) and cadmium (Cd(II)) from wastewaters by combining bioremediation of toxic Se-rich wastewater with the biorecovery of Se as CdSe NPs. The results showed compositional changes in the extracellular polymeric substances (EPS) matrix of the anaerobic granular sludge upon exposure to Cd(II) and Se(IV) and identified the roles of EPS fractions in the biogenesis of CdSe NPs. Besides, it was found that the EPS on the surface of the biogenic Se NPs play a major role in lowering the bioavailability and toxicity of biogenic Se(0) compared to chemogenic Se(0) NPs. An upflow anaerobic sludge blanket (UASB) reactor was used for the first time to continuously remove tellurite from wastewater and recover biogenic Te(0).
588 _aOnline resource; title from PDF title page (EBSCO, viewed May 10, 2018).
600 _aJoyabrata mal
650 0 _aChalcogenides.
650 0 _aNanoparticles.
650 0 _aMicrobiological synthesis.
650 2 _aNanoparticles
650 6 _aChalcog�enures.
650 6 _aNanoparticules.
650 6 _aSynth�ese microbiologique.
650 7 _aSCIENCE
_xChemistry
_xInorganic.
_2bisacsh
650 7 _aChalcogenides
_2fast
650 7 _aMicrobiological synthesis
_2fast
650 7 _aNanoparticles
_2fast
776 0 8 _iPrint version:
_z1138600423
_z9781138600423
_w(OCoLC)1022530868
856 4 0 _3EBSCOhost
_uhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1769566
910 _aمها ازاد حامد
942 _2ddc
_cBK
948 _hNO HOLDINGS IN IQMCL - 19 OTHER HOLDINGS
999 _c35996
_d35996