000 | 02549nam a22003617a 4500 | ||
---|---|---|---|
001 | 36159 | ||
003 | OSt | ||
005 | 20250908094010.0 | ||
008 | 170127t20172017enka b 001 0 eng c | ||
020 |
_a9781107192119 _q(hbk. ; _qalk. paper) |
||
020 |
_a1107192110 _q(hbk. ; _qalk. paper) |
||
020 |
_a9781316642214 _q(pbk. ; _qalk. paper) |
||
020 |
_a1316642216 _q(pbk. ; _qalk. paper) |
||
020 |
_z9781108129312 _q(PDF ebook) |
||
040 |
_aOU/DLC _beng _erda _cOSU |
||
082 | 7 | 4 |
_a519.542 _223 _bB154 |
100 | 1 |
_aBailer-Jones, Coryn A. L., _eauthor. |
|
245 | 1 | 0 |
_aPractical Bayesian inference : _ba primer for physical scientists / _cCoryn A.L. Bailer-Jones, Max-Planck-Institut for Astronomie, Heidelberg. |
264 | 1 |
_aCambridge, United Kingdom ; _aNew York, NY : _bCambridge University Press, _c2017. |
|
300 |
_aix, 295 pages : _billustrations ; _c26 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
504 | _aIncludes bibliographical references (pages 289-209) and index. | ||
505 | 0 | _aProbability basics -- Estimation and uncertainty -- Statistical models and inference -- Linear models, least squares, and maximum likelihood -- Parameter estimation: single parameter -- Parameter estimation: multiple parameters -- Approximating distributions -- Monte Carlo methods for inference -- Parameter estimation: Markov Chain Monte Carlo -- Frequentist hypothesis testing -- Model comparison -- Dealing with more complicated problems. | |
520 | _a"Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes from complexity: data may be numerous, high dimensional, and correlated, making it difficult to see structures. This book is an introduction to statistical methods for analysing data. It presents the major concepts of probability and statistics as well as the computational tools we need to extract meaning from data in the presence of uncertainty"-- | ||
650 | 4 | _aBayesian statistical decision theory. | |
650 | 4 | _aMathematical physics. | |
776 | 0 | 8 |
_iEbook version : _z9781108129312 |
910 | _asaja | ||
942 |
_2ddc _cBK |
||
948 | _hNO HOLDINGS IN IQMCL - 74 OTHER HOLDINGS | ||
999 |
_c36159 _d36159 |