000 11682nam a22005057a 4500
001 36675
003 OSt
005 20250911113639.0
008 240831s2024 xx o ||| 0 eng d
020 _a9781394286577
020 _a1394286570
020 _a9781119896104
020 _a111989610X
020 _a9781119896098
020 _a1119896096
040 _aMaqsci73
_bara
_erda
_cscip
050 0 0 _aQC793.5.G327
082 7 4 _a030537.5/352
_2second edition
_bG327
100 1 _aGilmore, Gordon.
245 1 0 _aPractical Gamma-Ray Spectrometry.
250 _a3rd ed.
264 1 _aNewark :
_bJohn Wiley & Sons, Incorporated,
_c2024.
264 4 _c�2024.
300 _a1 online resource (542 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _a7.8.1 Empirical Mathematics.
505 8 _a2.1 Introduction -- 2.2 Mechanisms of Interaction -- 2.2.1 Photoelectric Absorption -- 2.2.2 Compton Scattering -- 2.2.3 Pair Production -- 2.3 Total Attenuation Coefficients -- 2.4 Interactions Within the Detector -- 2.4.1 The Very Large Detector -- 2.4.2 The Very Small Detector -- 2.4.3 The 'Real' Detector -- 2.4.4 Summary -- 2.5 Interactions Within the Shielding -- 2.5.1 Photoelectric Interactions -- 2.5.2 Compton Scattering -- 2.5.3 Pair Production -- 2.6 Bremsstrahlung -- 2.7 Attenuation of Gamma Radiation -- 2.8 The Design of Detector Shielding -- Practical Points -- Further Reading -- Chapter 3 Semiconductor Detectors for Gamma-Ray Spectrometry -- 3.1 Introduction -- 3.2 Semiconductors and Gamma-Ray Detection -- 3.2.1 The Band Structure of Solids -- 3.2.2 Mobility of Holes -- 3.2.3 Creation of Charge Carriers by Gamma Radiation -- 3.2.4 Suitable Semiconductors for Gamma-Ray Detectors -- 3.2.5 Newer Semiconductor Materials -- 3.3 The Nature of Semiconductors -- 3.4 The Manufacture of Germanium Detectors -- 3.4.1 Introduction -- 3.4.2 The Manufacturing Process -- 3.4.3 Lithium-Drifted Detectors -- 3.4.4 Detector Configurations -- 3.4.5 Absorption in Detector Caps and Dead Layers -- 3.4.6 Detectors for Low-Energy Measurements -- 3.4.7 Well Detectors -- 3.5 Detector Capacitance -- 3.5.1 Microphonic Noise -- 3.6 Charge Collection in Detectors -- 3.6.1 Charge Collection Time -- 3.6.2 Shape of the Detector Pulse -- 3.6.3 Timing Signals from Germanium Detectors -- 3.6.4 Electric Field Variations Across the Detector -- 3.6.5 Removing Weak Field Regions from Detectors -- 3.6.6 Trapping of Charge Carriers -- 3.6.7 Radiation Damage -- 3.7 Packaging of Detectors -- 3.7.1 Construction of the Detector Mounting -- 3.7.2 Loss of Coolant -- 3.7.3 Demountable Detectors -- 3.7.4 Electrical Cooling of Detectors -- 3.8 Position-Sensitive Detectors.
505 8 _a3.8.1 Segmentation -- 3.8.2 Gamma-Ray Tracking -- Practical Points -- Further Reading -- Chapter 4 Electronics for Gamma-Ray Spectrometry -- 4.1 The General Electronic System -- 4.1.1 Introduction -- 4.1.2 Electronic Noise and Its Implications for Spectrum Resolution -- 4.1.3 Pulse Shapes in Gamma Spectrometry Systems -- 4.1.4 Impedance - Inputs and Outputs -- 4.1.5 The Impedance of Cabling -- 4.1.6 Impedance Matching -- 4.2 Detector Bias Supplies -- 4.3 Preamplifiers -- 4.3.1 Resistive Feedback Preamplifiers -- 4.3.2 Reset Preamplifiers -- 4.3.3 The Noise Contribution of Preamplifiers -- 4.3.4 The Rise Time of Preamplifiers -- 4.3.5 Intelligent Preamplifiers and High-Voltage Supplies -- 4.4 Amplifiers and Pulse Processors -- 4.4.1 The Functions of the Amplifier -- 4.4.2 Pulse Shaping -- 4.4.3 The Optimum Pulse Shape -- 4.4.4 The Optimum Pulse Shaping Time Constant -- 4.4.5 The Gated Integrator Amplifier -- 4.4.6 Pole-zero Cancellation -- 4.4.7 Baseline Shift -- 4.4.8 Pile-up Rejection -- 4.4.9 Amplifier Gain and Overview -- 4.5 Resolution Enhancement -- 4.5.1 New Semiconductor Materials -- 4.6 Multichannel Analysers and Their Analogue-to-Digital Converters -- 4.6.1 Introduction -- 4.6.2 Pulse Range Selection -- 4.6.3 The ADC Input Gate -- 4.6.4 The ADC -- 4.6.4.1 The Wilkinson ADC -- 4.6.4.2 The Successive Approximation ADC -- 4.6.5 MCA Conversion Time and Dead Time -- 4.6.6 Choosing an ADC -- 4.6.7 Linearity in MCAs -- 4.6.8 Optimum Spectrum Size -- 4.6.9 MCA Terms and Definitions -- 4.6.10 A Short History of MCA Systems -- 4.6.11 Simple MCA Analysis Functions -- 4.7 Live Time Correction and Loss-Free Counting -- 4.7.1 Live Time Clock Correction -- 4.7.2 The Gedcke-Hale Method -- 4.7.3 Use of a Pulser -- 4.7.4 Loss-Free Counting (LFC) -- 4.7.5 MCA Throughput -- 4.8 Spectrum Stabilization -- 4.8.1 Analogue Stabilization.
505 8 _a4.8.2 Digital Stabilization -- 4.9 Coincidence and Anticoincidence Gating -- 4.10 Multiplexing and Multiscaling -- 4.11 Digital Pulse Processing Systems -- Practical Points -- Further Reading -- Chapter 5 Statistics of Counting -- 5.1 Introduction -- 5.1.1 Statistical Statements -- 5.2 Counting Distributions -- 5.2.1 The Binomial Distribution -- 5.2.2 The Poisson and Gaussian Distributions -- 5.3 Sampling Statistics -- 5.3.1 Confidence Limits -- 5.3.2 Combining the Results from Different Measurements -- 5.3.3 Propagation of Uncertainty -- 5.4 Peak Area Measurement -- 5.4.1 Simple Peak Integration -- 5.4.2 Peaked-Background Correction -- 5.5 Counting Decision Limits -- 5.5.1 Critical Limit (LC): 'Is the Net Count Significant?' -- 5.5.2 Upper Limit (LU): 'Given That This Count Is Not Statistically Significant, What Is the Maximum Statistically Reasonable Count?' -- 5.5.3 Confidence Limits -- 5.5.4 Detection Limit (LD): 'What Is the Minimum Number of Counts that I Can Be Confident of Detecting?' -- 5.5.5 Determination Limit (LQ): 'How Many Counts Would I Have to Have to Achieve a Particular Statistical Uncertainty?' -- 5.5.6 Other Calculation Options -- 5.5.7 Minimum Detectable Activity (MDA): 'What Is the Least Amount of Activity I Can Be Confident of Measuring?' -- 5.5.8 Uncertainty of the LU and MDA -- 5.5.9 An Example by Way of Summary -- 5.6 Special Counting Situations -- 5.6.1 Non-Poisson Counting -- 5.6.2 Low Numbers of Counts -- 5.6.3 Non-Poisson Statistics Due to Pile-up Rejection and Loss-Free Counting -- 5.7 Optimizing Counting Conditions -- 5.7.1 Optimum Background Width -- 5.7.2 Optimum Peak Width -- 5.7.3 Optimum Spectrum Size -- 5.7.4 Optimum Counting Time -- 5.8 Uncertainty Budgets -- 5.8.1 Introduction -- 5.8.2 Accuracy and Precision -- 5.8.3 Types of Uncertainty -- 5.8.4 Types of Distribution -- 5.8.5 Uncertainty on Sample Preparation.
520 _aThis comprehensive guide to gamma-ray spectrometry, authored by Gordon Gilmore and David Joss, provides a detailed exploration of the principles and practices involved in the field. The book covers a wide range of topics, including radioactive decay, interactions of gamma radiation with matter, and the use of semiconductor and scintillation detectors. It also delves into the electronics necessary for gamma-ray spectrometry, statistical methods for data analysis, and calibration techniques. The authors aim to provide both theoretical knowledge and practical insights, making the book suitable for researchers, practitioners, and students in nuclear physics and related disciplines. The third edition includes updated content reflecting advances in technology and methodology, ensuring its relevance to current scientific and industrial applications.
588 _aDescription based on publisher supplied metadata and other sources.
588 _aPart of the metadata in this record was created by AI, based on the text of the resource.
650 0 _aGamma ray spectrometry.
650 0 _aRadioactive decay.
700 1 _aJoss, David.
776 0 8 _z9781119896081
776 0 8 _z1119896088
880 0 _6505-00
_aCover -- Title Page -- Copyright -- Contents -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Internet Resources Within the Book -- About the Website -- Chapter 1 Radioactive Decay and the Origin of Gamma and X-Radiation -- 1.1 Introduction -- 1.2 Beta Decay -- 1.2.1 (Sb(B− or Negatron Decay -- 1.2.2 (Sb(B+ or Positron Decay -- 1.2.3 Electron Capture (EC) -- 1.2.4 Multiple Stable Isotopes -- 1.3 Alpha Decay -- 1.4 Spontaneous Fission (SF) -- 1.5 Exotic Decay Modes -- 1.6 Gamma Emission -- 1.6.1 The Electromagnetic Spectrum -- 1.6.2 Some Properties of Nuclear Transitions -- 1.6.3 Lifetimes of Nuclear Energy Levels -- 1.6.4 Width of Nuclear Energy Levels -- 1.6.5 Internal Conversion -- 1.6.6 Abundance, Yield and Emission Probability -- 1.6.7 Ambiguity in Assignment of Nuclide Identity -- 1.7 Other Sources of Photons -- 1.7.1 Annihilation Radiation -- 1.7.2 Bremsstrahlung -- 1.7.3 Prompt Gamma-Rays -- 1.7.4 X-rays -- 1.7.4.1 X-ray Nomenclature -- 1.7.4.2 X-ray Energies -- 1.7.4.3 X-rays and Identification -- 1.7.4.4 The Energy Widths of X-rays -- 1.8 The Mathematics of Decay and Growth of Radioactivity -- 1.8.1 The Decay Equation -- 1.8.2 Growth of Activity in Reactors -- 1.8.3 Growth of Activity from Decay of a Parent -- 1.8.3.1 Transient Equilibrium - t1/2 Parent &gt -- t1/2 Daughter -- 1.8.3.2 Secular Equilibrium - t1/2 Parent &amp -- gg -- t1/2 Daughter -- 1.8.3.3 No Equilibrium - t1/2 Parent &lt -- t1/2 Daughter -- 1.8.3.4 Multiple Parent-Daughter Relationships -- 1.9 The Chart of the Nuclides -- 1.9.1 A Source of Nuclear Data -- 1.9.2 A Source of Generic Information -- 1.9.2.1 Thermal Neutron Capture (n, (Sd(B) -- 1.9.2.2 Fast Neutron Reactions, (n, p), etc. -- 1.9.2.3 Fission Reactions (n, f) -- Practical Points -- Further Reading -- Chapter 2 Interactions of Gamma Radiation with Matter.
880 8 _6505-00
_a5.8.6 Counting Uncertainties -- 5.8.7 Calibration Uncertainties -- 5.8.7.1 Nuclear Data Uncertainty -- 5.8.7.2 Uncertainty on Efficiency Calibration Standards -- 5.8.8 An Example of an Uncertainty Budget -- Practical Points -- Further Reading -- Chapter 6 Resolution: Origins and Control -- 6.1 Introduction -- 6.2 Charge Production - (S}(BP -- 6.2.1 Germanium Versus Silicon -- 6.2.2 Germanium Versus Sodium Iodide -- 6.2.3 Temperature Dependence of Resolution -- 6.3 Charge Collection - (S}(BC -- 6.3.1 Mathematical Form of (S}(BC -- 6.4 Electronic Noise - (S}(BE -- 6.4.1 Parallel Noise -- 6.4.2 Series Noise -- 6.4.3 Flicker Noise -- 6.4.4 Total Electronic Noise and Shaping Time -- 6.5 Resolving the Peak Width Calibration -- Practical Points -- Further Reading -- Chapter 7 Spectrometer Calibration -- 7.1 Introduction -- 7.2 Reference Data for Calibration -- 7.3 Sources for Calibration -- 7.4 Energy Calibration -- 7.4.1 Errors in Peak Energy Determination -- 7.5 Peak Width Calibration -- 7.5.1 Factors Affecting Peak Width -- 7.5.2 Algorithms for Peak Width Estimation -- 7.5.3 Estimation of the Peak Height -- 7.5.4 Anomalous Peak Widths -- 7.6 Efficiency Calibration -- 7.6.1 Which Efficiency? -- 7.6.2 Full-energy Peak Efficiency -- 7.6.3 Is an Efficiency Calibration Curve Necessary? -- 7.6.4 The Effect of Source-to-Detector Distance -- 7.6.5 Calibration Errors Due to Difference in Sample Geometry -- 7.6.6 An Empirical Correction for Sample Height -- 7.6.7 Effect of Source Density on Efficiency -- 7.6.7.1 Corrections Based on Estimated Mass Attenuation Coefficients -- 7.6.7.2 Empirical Correction for Self-absorption -- 7.6.8 Efficiency Loss Due to Random Summing (Pile-up) -- 7.6.9 True Coincidence Summing -- 7.6.10 Corrections for Radioactive Decay -- 7.6.11 Electronic Timing Problems -- 7.7 Absolute Total Efficiency -- 7.8 Mathematical Efficiency Calibration.
910 _ashireen falah hasan.
942 _2ddc
_cBK
948 _hNO HOLDINGS IN IQMCL - 27 OTHER HOLDINGS
999 _c36675
_d36675